GacA regulates symbiotic colonization traits of Vibrio fischeri and facilitates a beneficial association with an animal host.

نویسندگان

  • Cheryl A Whistler
  • Edward G Ruby
چکیده

The GacS/GacA two-component system regulates the expression of bacterial traits during host association. Although the importance of GacS/GacA as a regulator of virulence is well established, its role in benign associations is not clear, as mutations in either the gacS or gacA gene have little impact on the success of colonization in nonpathogenic associations studied thus far. Using as a model the symbiotic association of the bioluminescent marine bacterium Vibrio fischeri with its animal host, the Hawaiian bobtail squid, Euprymna scolopes, we investigated the role of GacA in this beneficial animal-microbe interaction. When grown in culture, gacA mutants were defective in several traits important for symbiosis, including luminescence, growth in defined media, growth yield, siderophore activity, and motility. However, gacA mutants were not deficient in production of acylated homoserine lactone signals or catalase activity. The ability of the gacA mutants to initiate squid colonization was impaired but not abolished, and they reached lower-than-wild-type population densities within the host light organ. In contrast to their dark phenotype in culture, gacA mutants that reached population densities above the luminescence detection limit had normal levels of luminescence per bacterial cell in squid light organs, indicating that GacA is not required for light production within the host. The gacA mutants were impaired at competitive colonization and could only successfully cocolonize squid light organs when present in the seawater at higher inoculum densities than wild-type bacteria. Although severely impaired during colonization initiation, gacA mutants were not displaced by the wild-type strain in light organs that were colonized with both strains. This study establishes the role of GacA as a regulator of a beneficial animal-microbe association and indicates that GacA regulates utilization of growth substrates as well as other colonization traits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The GacA global regulator of Vibrio fischeri is required for normal host tissue responses that limit subsequent bacterial colonization.

Harmful and beneficial bacterium-host interactions induce similar host-tissue changes that lead to contrasting outcomes of association. A life-long association between Vibrio fischeri and the light organ of its host Euprymna scolopes begins when the squid collects bacteria from the surrounding seawater using mucus secreted from ciliated epithelial appendages. Following colonization, the bacteri...

متن کامل

The haem-uptake gene cluster in Vibrio fischeri is regulated by Fur and contributes to symbiotic colonization.

Although it is accepted that bacteria-colonizing host tissues are commonly faced with iron-limiting conditions and that pathogenic bacteria often utilize iron from host-derived haem-based compounds, the mechanisms of iron acquisition by beneficial symbiotic bacteria are less clear. The bacterium Vibrio fischeri mutualistically colonizes the light organ of the squid Euprymna scolopes. Genome seq...

متن کامل

Obtaining Hemocytes from the Hawaiian Bobtail Squid Euprymna scolopes and Observing their Adherence to Symbiotic and Non-Symbiotic Bacteria

Studies concerning the role of the immune system in mediating molecular signaling between beneficial bacteria and their hosts have, in recent years, made significant contributions to our understanding of the co-evolution of eukaryotes with their microbiota. The symbiotic association between the Hawaiian bobtail squid, Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri has been u...

متن کامل

Host-selected mutations converging on a global regulator drive an adaptive leap towards symbiosis in bacteria

Host immune and physical barriers protect against pathogens but also impede the establishment of essential symbiotic partnerships. To reveal mechanisms by which beneficial organisms adapt to circumvent host defenses, we experimentally evolved ecologically distinct bioluminescent Vibrio fischeri by colonization and growth within the light organs of the squid Euprymna scolopes. Serial squid passa...

متن کامل

The Histidine Kinase BinK Is a Negative Regulator of Biofilm Formation and Squid Colonization

UNLABELLED Bacterial colonization of animal epithelial tissue is a dynamic process that relies on precise molecular communication. Colonization of Euprymna scolopes bobtail squid by Vibrio fischeri bacteria requires bacterial aggregation in host mucus as the symbiont transitions from a planktonic lifestyle in seawater to a biofilm-associated state in the host. We have identified a gene, binK (b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 185 24  شماره 

صفحات  -

تاریخ انتشار 2003